China high quality Riduttori Planetary Gearbox Rr Series Winch Wind Turbine Concrete Transit Mixer Reducer Gear Box Planetary Gear near me supplier

Product Description

Product Description

ZHangZhoug New CZPT Hydraulic Co., Ltd. is a professional manufacturer of planetary reducers/gearbox. At present,we developed tens of thousands specifications of the planetary reducer/gearbox, travel drive,swing drive and winch drive.The ratio range is 3.3~9000, and the output torque range is 500~1200000N.m. The installation, dimensions and performance parameters of the reducer are exactly the same as famous European brands, which can be perfectly replaced and interchanged.

Details as follows:
BONFIGLIOLI (300 series, 700C series, 700T series, 600W series)
BREVINI (EM, ED, ET, EQ, EC, PD, PDA, CTD, CTU, SL types)
DINAMIC OIL (types RE, GB, RA, GBA)
REGGIANA RIDUTTORI (RR, RA type)
COMER (PG, PGA, PGR, PGW types)
REXROTH (GFT, GFT-W, GFB type)
ROSSI (R2E, R3E, R4E, RCE, RC2E, RC3E, MR2E, MR3E, MR4E, MRCE, MRC2E, MRC3E)
ZOLLERN (ZHP3.13, ZHP3.15, ZHP3.19, ZHP3.20, ZHP3.22, ZHP3.24, ZHP3.25, ZHP3.26, ZHP3.27, ZHP3.29, ZHP3.31, ZHP3.32)
FAIRFIELD, AUBURN GEAR, OMNI GEAR, O&K, etc. Therefore,our planetary reducer/gearbox can be used to replace the gearboxes of these brands.

 

300 Series Planetary Geabox Parameter

 

Office Environment

Our Equipment
Accessories for 300 Series

Certificate

Contact Us

How to contact us?
 Nancy Zhang

Foreign Sales&Marketing Manager
HangZhou Kemer Engineering Machinery Co.,LTD
 

Bonfiglioli Dinamic oil Brevini RR
300 RE110 EM1010 ED1010 ET2010 RR65/105
301 RE210 EM1030 ED1030 ET2030 RR110/210
303 RE240 ED2030 ET3030 EQ4030 RR310
304 RE310 ED2040 ET3040 EQ4040 RR510
305 RE510 EM1045 ED2045 ET3045 RR510/710
306 RE810 EM1046 ED2046 ET3046 RR810
EM1065 ED2065 ET3065
307 RE1020 EM1090 ED2090 ET3090 RR1010
RE1520
309 RE1520 ED2150 ET3150 EQ4150 RR1700
310 RE2520 ED2250 ET3250 EQ4250 RR2700
ED2320 ET3320 EQ4320
311 RE3510 SL3001,SL3002,SL3003,SL3004 RR4000
313 RE3511,RE3512,RE3513,RE3514 SL4001,SL4002,SL4003,SL4004 RR5000/RR5200
315 RE6520 SL6001,SL6002,SL6003,SL6004   SL8501,SL8502,SL8503 RR6500
316 GB11000 SL12001,SL12002,SL12003,SL12004 RR8000
317 GB18000,GB21000, SL18001,SL18002,SL18003 RR10000
318 GB26000 SL25001,SL25002,SL25003,SL25004    RR15000
319 GB53000,GB53000 SL35001,SL35002,SL35003,SL35004    RR20000
320      
321 GB61000    

###

  Model    

    Rated Output Torque  

(N.m)

Max.Power

(KW)

Max.Input Speed

(rpm)

Ratio
   
301 1750 30 3000 3.4-2700 7-700
303 2500 40 3000 3.6-2800 9-800
305 5000 60 3000 3.6-2800 9-800
306 8500 75 2500 3.6-2900 9-800
307 12500 100 2500 3.4-2400 13-700
309 18500 130

2500

3.4-2400 13-700
310 25000 150 2000 4-2500 40-900
311 35000 180 2000 4-2100 18-800
313 50000 200 2000 4-2200 18-800
315 80000 250 1500 4-1800 70-900
316 105000 270 1500 4.4-1200 50-600
317 150000 300 1000 4-1900 70-900
318 200000 340 1000 4.4-1100 200-700
319 30000 380 500 4.8-1400 300-800
Bonfiglioli Dinamic oil Brevini RR
300 RE110 EM1010 ED1010 ET2010 RR65/105
301 RE210 EM1030 ED1030 ET2030 RR110/210
303 RE240 ED2030 ET3030 EQ4030 RR310
304 RE310 ED2040 ET3040 EQ4040 RR510
305 RE510 EM1045 ED2045 ET3045 RR510/710
306 RE810 EM1046 ED2046 ET3046 RR810
EM1065 ED2065 ET3065
307 RE1020 EM1090 ED2090 ET3090 RR1010
RE1520
309 RE1520 ED2150 ET3150 EQ4150 RR1700
310 RE2520 ED2250 ET3250 EQ4250 RR2700
ED2320 ET3320 EQ4320
311 RE3510 SL3001,SL3002,SL3003,SL3004 RR4000
313 RE3511,RE3512,RE3513,RE3514 SL4001,SL4002,SL4003,SL4004 RR5000/RR5200
315 RE6520 SL6001,SL6002,SL6003,SL6004   SL8501,SL8502,SL8503 RR6500
316 GB11000 SL12001,SL12002,SL12003,SL12004 RR8000
317 GB18000,GB21000, SL18001,SL18002,SL18003 RR10000
318 GB26000 SL25001,SL25002,SL25003,SL25004    RR15000
319 GB53000,GB53000 SL35001,SL35002,SL35003,SL35004    RR20000
320      
321 GB61000    

###

  Model    

    Rated Output Torque  

(N.m)

Max.Power

(KW)

Max.Input Speed

(rpm)

Ratio
   
301 1750 30 3000 3.4-2700 7-700
303 2500 40 3000 3.6-2800 9-800
305 5000 60 3000 3.6-2800 9-800
306 8500 75 2500 3.6-2900 9-800
307 12500 100 2500 3.4-2400 13-700
309 18500 130

2500

3.4-2400 13-700
310 25000 150 2000 4-2500 40-900
311 35000 180 2000 4-2100 18-800
313 50000 200 2000 4-2200 18-800
315 80000 250 1500 4-1800 70-900
316 105000 270 1500 4.4-1200 50-600
317 150000 300 1000 4-1900 70-900
318 200000 340 1000 4.4-1100 200-700
319 30000 380 500 4.8-1400 300-800

Spiral Gears for Right-Angle Right-Hand Drives

Spiral gears are used in mechanical systems to transmit torque. The bevel gear is a particular type of spiral gear. It is made up of two gears that mesh with one another. Both gears are connected by a bearing. The two gears must be in mesh alignment so that the negative thrust will push them together. If axial play occurs in the bearing, the mesh will have no backlash. Moreover, the design of the spiral gear is based on geometrical tooth forms.
Gear

Equations for spiral gear

The theory of divergence requires that the pitch cone radii of the pinion and gear be skewed in different directions. This is done by increasing the slope of the convex surface of the gear’s tooth and decreasing the slope of the concave surface of the pinion’s tooth. The pinion is a ring-shaped wheel with a central bore and a plurality of transverse axes that are offset from the axis of the spiral teeth.
Spiral bevel gears have a helical tooth flank. The spiral is consistent with the cutter curve. The spiral angle b is equal to the pitch cone’s genatrix element. The mean spiral angle bm is the angle between the genatrix element and the tooth flank. The equations in Table 2 are specific for the Spread Blade and Single Side gears from Gleason.
The tooth flank equation of a logarithmic spiral bevel gear is derived using the formation mechanism of the tooth flanks. The tangential contact force and the normal pressure angle of the logarithmic spiral bevel gear were found to be about twenty degrees and 35 degrees respectively. These two types of motion equations were used to solve the problems that arise in determining the transmission stationary. While the theory of logarithmic spiral bevel gear meshing is still in its infancy, it does provide a good starting point for understanding how it works.
This geometry has many different solutions. However, the main two are defined by the root angle of the gear and pinion and the diameter of the spiral gear. The latter is a difficult one to constrain. A 3D sketch of a bevel gear tooth is used as a reference. The radii of the tooth space profile are defined by end point constraints placed on the bottom corners of the tooth space. Then, the radii of the gear tooth are determined by the angle.
The cone distance Am of a spiral gear is also known as the tooth geometry. The cone distance should correlate with the various sections of the cutter path. The cone distance range Am must be able to correlate with the pressure angle of the flanks. The base radii of a bevel gear need not be defined, but this geometry should be considered if the bevel gear does not have a hypoid offset. When developing the tooth geometry of a spiral bevel gear, the first step is to convert the terminology to pinion instead of gear.
The normal system is more convenient for manufacturing helical gears. In addition, the helical gears must be the same helix angle. The opposite hand helical gears must mesh with each other. Likewise, the profile-shifted screw gears need more complex meshing. This gear pair can be manufactured in a similar way to a spur gear. Further, the calculations for the meshing of helical gears are presented in Table 7-1.
Gear

Design of spiral bevel gears

A proposed design of spiral bevel gears utilizes a function-to-form mapping method to determine the tooth surface geometry. This solid model is then tested with a surface deviation method to determine whether it is accurate. Compared to other right-angle gear types, spiral bevel gears are more efficient and compact. CZPT Gear Company gears comply with AGMA standards. A higher quality spiral bevel gear set achieves 99% efficiency.
A geometric meshing pair based on geometric elements is proposed and analyzed for spiral bevel gears. This approach can provide high contact strength and is insensitive to shaft angle misalignment. Geometric elements of spiral bevel gears are modeled and discussed. Contact patterns are investigated, as well as the effect of misalignment on the load capacity. In addition, a prototype of the design is fabricated and rolling tests are conducted to verify its accuracy.
The three basic elements of a spiral bevel gear are the pinion-gear pair, the input and output shafts, and the auxiliary flank. The input and output shafts are in torsion, the pinion-gear pair is in torsional rigidity, and the system elasticity is small. These factors make spiral bevel gears ideal for meshing impact. To improve meshing impact, a mathematical model is developed using the tool parameters and initial machine settings.
In recent years, several advances in manufacturing technology have been made to produce high-performance spiral bevel gears. Researchers such as Ding et al. optimized the machine settings and cutter blade profiles to eliminate tooth edge contact, and the result was an accurate and large spiral bevel gear. In fact, this process is still used today for the manufacturing of spiral bevel gears. If you are interested in this technology, you should read on!
The design of spiral bevel gears is complex and intricate, requiring the skills of expert machinists. Spiral bevel gears are the state of the art for transferring power from one system to another. Although spiral bevel gears were once difficult to manufacture, they are now common and widely used in many applications. In fact, spiral bevel gears are the gold standard for right-angle power transfer.While conventional bevel gear machinery can be used to manufacture spiral bevel gears, it is very complex to produce double bevel gears. The double spiral bevel gearset is not machinable with traditional bevel gear machinery. Consequently, novel manufacturing methods have been developed. An additive manufacturing method was used to create a prototype for a double spiral bevel gearset, and the manufacture of a multi-axis CNC machine center will follow.
Spiral bevel gears are critical components of helicopters and aerospace power plants. Their durability, endurance, and meshing performance are crucial for safety. Many researchers have turned to spiral bevel gears to address these issues. One challenge is to reduce noise, improve the transmission efficiency, and increase their endurance. For this reason, spiral bevel gears can be smaller in diameter than straight bevel gears. If you are interested in spiral bevel gears, check out this article.
Gear

Limitations to geometrically obtained tooth forms

The geometrically obtained tooth forms of a spiral gear can be calculated from a nonlinear programming problem. The tooth approach Z is the linear displacement error along the contact normal. It can be calculated using the formula given in Eq. (23) with a few additional parameters. However, the result is not accurate for small loads because the signal-to-noise ratio of the strain signal is small.
Geometrically obtained tooth forms can lead to line and point contact tooth forms. However, they have their limits when the tooth bodies invade the geometrically obtained tooth form. This is called interference of tooth profiles. While this limit can be overcome by several other methods, the geometrically obtained tooth forms are limited by the mesh and strength of the teeth. They can only be used when the meshing of the gear is adequate and the relative motion is sufficient.
During the tooth profile measurement, the relative position between the gear and the LTS will constantly change. The sensor mounting surface should be parallel to the rotational axis. The actual orientation of the sensor may differ from this ideal. This may be due to geometrical tolerances of the gear shaft support and the platform. However, this effect is minimal and is not a serious problem. So, it is possible to obtain the geometrically obtained tooth forms of spiral gear without undergoing expensive experimental procedures.
The measurement process of geometrically obtained tooth forms of a spiral gear is based on an ideal involute profile generated from the optical measurements of one end of the gear. This profile is assumed to be almost perfect based on the general orientation of the LTS and the rotation axis. There are small deviations in the pitch and yaw angles. Lower and upper bounds are determined as – 10 and -10 degrees respectively.
The tooth forms of a spiral gear are derived from replacement spur toothing. However, the tooth shape of a spiral gear is still subject to various limitations. In addition to the tooth shape, the pitch diameter also affects the angular backlash. The values of these two parameters vary for each gear in a mesh. They are related by the transmission ratio. Once this is understood, it is possible to create a gear with a corresponding tooth shape.
As the length and transverse base pitch of a spiral gear are the same, the helix angle of each profile is equal. This is crucial for engagement. An imperfect base pitch results in an uneven load sharing between the gear teeth, which leads to higher than nominal loads in some teeth. This leads to amplitude modulated vibrations and noise. In addition, the boundary point of the root fillet and involute could be reduced or eliminate contact before the tip diameter.

Recent Posts

Gear Coupling

As one of gear coupling manufacturers, suppliers and exporters of mechanical products, We offer gear coupling and many other products.

Please contact us for details.

Mail: sales@gearcoupling.top

Manufacturer supplier exporter of gear coupling.